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Figure 2. Deuterium NMR spectra of 200 mg of the Schiff base TV-bu­
tyl-/,/ '-rf2-2,4,6-octatrienylideneimine (a) in the crystalline phase at 30 
0C and (b) in the smectic phase at 63 0C. Spectra were obtained at a 
field of 7.1 T (2H frequency 46.3 MHz) by using a quadrupole echo pulse 
sequence with a 46-MS echo delay and a 2.5-jts ir/2 pulse. Recycle delays 
were 20 s for the crystalline sample and 0.4 s for the liquid crystal. Line 
broadening of I kHz was applied to the former and 100 Hz to the latter 
spectrum; total transients accumulated were 1440 for (a) and 4096 for 
(b). 

of their simple molecular structure, the polyene Schiff bases are 
therefore likely to be of some importance for the understanding 
of liquid crystalline phases in general. Polyenes and polyene Schiff 
bases are also of considerable theoretical interest in themselves, 
as oligomeric models for conjugated polymers, and are central 
to the mechanism of vision8 and to the operation of the proton 
pump bacteriorhodopsin;' the existence of readily accessible an­
isotropic phases should facilitate the determination of the structures 
and the understanding of the spectroscopy of such compounds. 
Such studies are in progress. 
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Thiostrepton (I),1 first isolated from Streptomyces azureus,2 

is the parent of a family of highly modified, sulfur-rich polypeptide 
antibiotics, which also includes the micrococcins,3 the siomycins,4 

the thiopeptins,s and nosiheptide.6 These compounds inhibit 
protein synthesis in gram-positive bacteria;7 however, their limited 
solubility has so far prevented development for clinical use, al­
though nosiheptide is used commercially as a growth promotant 
for poultry.8 As part of our interest in this family of com­
pounds,9-10 we have examined the biosynthesis of 1. 

Following unequivocal assignment of all the signals in the 13C 
NMR spectrum of I1112 (Tables I and II, Supplementary Ma­
terial), feeding experiments with 13C-labeled precursors in S. 
laurentii gave the results summarized in Figure 1 (see Tables I 
and II, Supplementary Material). As expected, based on pre­
cedent,9'13 both the butyrine and the dehydroalanine moieties arise 
from the corresponding /3-hydroxyamino acids, threonine and 
serine, the thiostreptine moiety is formed from isoleucine, and the 
thiazole rings each originate from a molecule of cysteine and the 
carboxyl group of an adjacent amino acid. Two molecules of 
serine, connected through their carbon atoms 3, and the carboxyl 
group of an adjacent cysteine give rise to the piperidine ring. 
Finally, the quinaldic acid moiety is formed from L-tryptophan. 
The latter accounts for all the carbon atoms except C12, which 
is contributed by methionine. The transformation of tryptophan 
may involve a ring expansion similar to that leading to the for­
mation of the quinine type alkaloids.14 The methyl group, Cl 2, 
would thus be attached to the carbon originating from C2 of the 
indole ring of tryptophan, and the question arises whether tryp­
tophan is first methylated at C2 and then transformed into the 
quinoline system or whether methylation is a later step in the 
biosynthesis. 

We therefore synthesized D,L-2-methyl-[3'-13C]tryptophan (99% 
13C) in analogy to the method of Weygand and Linden15 and fed 
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Figure 1. Structure of thiostrepton and its labeling pattern from various 13C-labeled amino acids. 

it to cultures of S. laurentii (100 mg to 1 L). 13C NMR analysis 
of the resulting 1 (100 mg) revealed a single enhanced signal at 
122.26 ppm (~40% 13C enrichment) corresponding to C3 of the 
quinaldic acid, indicating efficient and specific incorporation of 
2-methyltryptophan (2). In further support of the notion that 
2 is an intermediate in the biosynthesis of 1 we were able to 
demonstrate its formation and presence in 1-producing cultures 
of S. laurentii. Trapping experiments with D,L-2-methyl-[3'-
13C] tryptophan (200 mg/L) showed 5-10% dilution of the isotope 
in the reisolated material, butanol extraction of the mycelia 
followed by derivatization and GC-MS revealed the presence of 
2, with concentrations highest just prior to the appearance of 1, 
and cell-free extracts of 36 h old mycelia of S. laurentii catalyzed 
the formation of tritiated 2 from tryptophan and [methyl-3H]-
AdoMet. All these results strongly point to methylation of 
tryptophan as the first step in the formation of the quinaldic acid 
moiety of 1. 

To determine the steric course of tryptophan methylation at 
C-2 we fed (methyl-R)- and (methyl-S)-[We^Z-2H15

3H]-
methionine16 to cultures of 5. laurentii and subjected the resulting 
1 to Kuhn-Roth oxidation17 to give acetic acid which was analyzed 
for the chirality of its methyl group.18"20 As summarized in 
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Scheme I the methyl group is clearly transferred with net retention 
of configuration, contrary to most21'22 but not all23 methionine-
dependent methylations. This is not the result of a process in-
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Scheme II 

quinaldic acid moiety of 1 

volving an intermediate methylene group, as in sterol side-chain 
methylation,21 because L-[methy !-13C,^ijmethiomne is incor­
porated with complete retention of all three deuterium atoms (data 
not shown). No change in methyl group configuration takes place 
after the initial transfer to C2 of the indole ring since in another 
series of experiments (methyl-R)-[methyl-2U.u

iH]methiomneM 

gave 2 carrying an R methyl group (acetic acid from Kuhn-Roth 
oxidation: F = 69; 65% ee R) and the S isomer gave 2 carrying 
an S methyl group (F = 31; 66% ee S). Whether the unusual 
retention stereochemistry reflects the transient methylation of a 
site on the enzyme, e.g., a cobalamin cofactor,25 in the process 
or results from initial transfer of the methyl group to a different 
site on the substrate followed by intramolecular migration remains 
to be established. 

The further conversion of 2 into the quinaldic acid moiety of 
1 may involve either (a) cleavage of the Nl/C7a bond and con­
nection of the side-chain nitrogen to C7a or (b) cleavage of the 
Nl /C2 bond and connection of C2' to Nl. This issue was decided 
in favor of option (b) by feeding L-[;Wo/e-15N,l',2'-13C2]tryp-
tophan.26 The resulting 1 showed 13C enrichment in the carboxyl 
group and C2 of the quinaldic acid moiety and one-bond coupling 
of these two signals to each other. In addition, the QC2 signal 
at 143.56 ppm displayed 3.02 Hz one-bond coupling to 15N, and 
the QCO showed a two-bond coupling of 8.08 Hz to the 15N,28 

indicating that C2' of tryptophan has been intramolecularly 
connected to the 15N-labeled indole nitrogen. A mechanistically 
reasonable pathway for the transformation of the indole to the 
quinoline system, which is consistent with the experimental data, 
is portrayed in Scheme II. This process has chemical precedent 
in the hypochlorite-catalyzed conversion of 2 into 4-acetyl-
quinoline.29 
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Organometallic derivatives of the 5- and p-block elements, e.g., 
Li, Mg, and Al, are extremely important reagents in both organic 
and organometallic chemistry,1 and significant efforts have been 
directed to determine the mechanisms of their reactions.2 For 
example, studies have shown that, in addition to the conventional 
view of Grignard reactions with ketones as simple nucleophilic 
additions, an additional pathway involves single electron-transfer 
processes and the formation of radicals.3 However, mechanistic 
studies of Grignard reagents are complicated by the complexity 
of the species present in solution.3'4 Mechanistic investigations 
of the reactions of s- and p-block organometallic complexes would 
be aided by the synthesis of well-defined monomeric derivatives, 
LnM-R. This paper describes the use of |?73-tris(pyrazolyl)-
hydroboratoj ligands5'6 to prepare alkyl derivatives of Mg and Al, 
in which chelation of the three nitrogen atom donors would be 
expected to provide a sterically demanding ligand environment7 
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